Jason builds a plane

airplane - tons of work, blog not so much

16/6/2019

0 Comments

 
I'm finding it more and more difficult to keep my blog up to date - I've accomplished much in the last few weeks.  A lot of it has been routine fitting, drilling, cleco stuff so I haven't been taking many pictures.  There are a few updates to share though.

​With the one side partly secured with clecos, I moved the stab to the other bench.  A large square steel tube was placed on the top to gently bend the skin partially into position before we tightened the ratchet straps to pull the skin down tight around the nose and upper surface.
Picture

Long strips of wood help spread the strap loads across the length allowing for fine adjustment.  You have to be real careful here, too tight and the skin can collapse at the nose, leading to damaging kinks.
Picture

With the fit confirmed, I made a few reference marks, then it all comes apart and I can start the process of measuring the skin for holes.  This is the only way to make sure the skin rivets are centered on the ribs as I don't have the luxury of pre-drilled skins.
Picture

Measure twice and then twice again, using the stab skeleton as a reference.
Picture

Again, I don't have any photos of the assembly, but the process is the same as above - weigh down the skin with the metal tube, use the straps to draw the skin down tight.  The only thing that's different this time is drilling through the skin holes and into the structure below.  I worked from the nose back to the rear edge (right to left in the photo) and from centre section out to the tips.  Each hole gets a cleco until the rear most holes, ensuring a tight and bubble free fit.
Picture

Spar lines front and rear are drawn and rivet holes drilled.  These don't have to be done with the skin off as the spar is a straight line and on this side the spar isn't pre-drilled.  Again, measure 3 times - it's important the spar holes are centred on the spar flange:
Picture
Picture
Picture

I'm happy with how this turned out.  Next step was using the template I made earlier to start laying out the slots for the horizontal stab brackets
Picture

This cutting is very delicate.  The skin needs to be trimmed to be flush with the spar so the brackets sit flat and vertical against the spar.  Cutting the skin is fairly easy, but any damage to the spar will be fatal!

I traced out the approximate location of the slots using the template and confirming with the plans started a pilot hole
Picture

I used a Dremel tool and rotary burl bit to slowly expand the hole enough so i could see where the rivet holes in the spar for the bracket are:
Picture
Picture

With a confirmed visual and measured slot location, I redrew the hole on the skin and slowly used the burr and some gentle hand filing to get it to the correct shape and location, ever mindful not to cut or mark the spar.  Round files make a perfect corner:
Picture

Eventually with patience, the stab bracket fits nice and straight in the hole and perfectly vertical and flush with the spar underneath (it's sitting a little low inside the stab here as I couldn't hold it and take a photo at the same time!)
Picture

With that experience, the second slot went well too.  I cleaned up the ragged edges a bit using a Dremel sanding/cutoff disc.  The slots still have to be deburred properly, but that will come when the skin is off for full deburring:
Picture
Picture
Picture

On another note, Dad and I travelled to St. Hubert airport outisde of Montreal to attend the first flight of a C47/DC3 know as C-FDTD.  We've been following the epic journey of Mikey McBryan (of Ice Pilots fame) and his Plane Savers team as they restore to flight a WW2 D-day survivor - a DC3 that dropped paratroopers over Normandy on D-day and during operation Market Garden,  and that was sitting derelict, falling victim to vandals and the passage of time being slowly destroyed by neglect.

Here are a few personal pics of that trip - motivational for sure!  For a full experience and to see what an amazing accomplishment this is, checkout www.planesavers.ca - of particular interest, watch the YouTube segments from the beginning - awesome and well worth your time!

Here is a copy of the flyer they were handing out to guests:
Picture
Picture
Picture
Picture
Picture

What an honour to be there and share this with Dad and the thousands of others who followed the restoration was unbelievably amazing.....  what a great feeling watching it take to the sky again!  All I could think about were are brave young countrymen that participated in the D-Day invasion exactly 75 years prior - God bless them and thank you for our freedoms!
Picture
Touching history!
Picture

I was so happy to share this adventure with Dad.  As I post this blog on Father's Day, I'm reminded how much influence Dad has had on my life, particularly a love for aviation history.  Thanks Dad!
​
While in the Montreal area, I also picked up a left/right set of fibreglass wingtips for my 750.  These retail for $160USD a piece and I grabbed this uncut pair for $100CAD.  Steal!
Picture
Picture

So, it's been a productive couple of weeks.  Next up, I'll finish the stab skin, get the stab brackets installed permanently and proceed to skin the elevator. Once I have it skinned, I begin the process to line them up together and drill the mount holes for the hinge points.

Thanks for reading, more to come :)
0 Comments

what an amazing weekend!

27/1/2019

0 Comments

 
Getting close enough to getting the 701 wing completed, it's time to start planning the rest of the tail group on my 750.  That means ordering some aluminum!

I called the supplier (Aircraft Spruce Canada) and ordered all the 016 I need for the entire build, a sheet of 025 to replace what I've used from Ron and some elevator trim tab hinge.  The plan was to go last weekend, but the huge storm that dumped on southern Ontario precluded the trip so instead we loaded up the truck and headed south this weekend.
Picture
On our way south for an overnight at the hotel - with the three biggest supporters of my build - my family Caitlyn, Natalie and Brenda (driving) :)
Picture
From -32 at home to -7 in Brantford - that's a big margin!

​We arrived in Brantford and convenient for the girls, an equestrian riding store is about a kilometer away from ACS.  I dropped them off and headed to ACS to pick up my order and some items for Ron.
Picture

The staff at ACS are fantastic - I had asked them to roll the aluminum as small as possible in order to fit it under the tonneau cover of our truck and keep it out of the winter weather.  They are masters!
Picture
Three rolls of 4x12 foot aluminum sheet, nested inside one another. The inner package is a roll of foil backed insulation for Ron, not a bundle of heroin like a friend commented when seeing this picture (honest!) I also grabbed the bolts, washers and nuts I need for the tail group.

In addition to stopping at ACS, I had been in contact with another 750STOL builder in Burlington - Ghazan Hieder.  Ghazan has been slowly working on his kit for about 10 years and self admits that any upgrade that comes out from Zenair he buys, so when edition 3 cabin changes were announced, he bought the plans and updated parts, making some edition 2 parts available.  He had advertised on the Zenair Builders website he was giving away an edition 2 cabin frame and windshield, so I made arrangements to meet up with him while down south to take possession of these two valuable items.

He was glad I called as he had hoped to find another builder who could use these items - and I was glad to take them off his hands.  All the research I could find shows only minor modifications need to be made to the cabin frame and the windshield is another easy mod.

Ghazan also offered me an early edition nose wheel fork and nose strut - he'd replaced his with Viking steel spring mod, something I'm considering too.  If I can't use the strut he gave me, it will work for one of Ron's 701 builds.

Brenda helped me load everything into the truck as best we could, but we decided to put the windshield in the back seat until we could work in the daylight the next morning.

With better lighting, it was easy to pack everything safe ans secure.  I borrowed some moving blankets from a buddy and laid them out in a way to protect the plastic edges of the windshield and the sharp edges of the cabin frame.
Picture

Getting it home safely worked really well, thanks to Brenda's amazing packing skills!

Unpacking it all at the shop, here is a better look:
Picture
My rolls of aluminum from ACS - all the 016 I need for the entire project!
Picture
6 feet of aluminum "piano hinge" - frustrating thing is that I need just over 4 feet - ACS sells it in 4 and 6 foot sections. Guess I'll find a use for the cut off piece.
Picture
The edition 2 cabin frame. Chromeomoly steel, expertly TIG welded by the factory. To make it into an edition 3? Cut to the top diagonal out and weld in some corner brace/handholds - simple for an expert like Ron!
Picture
The steel nose fork (bungee style) and older version square nose fork and nose fork doubler. Again, if I choose to switch to a different nose gear style, these can be used for a 701 already being assembled.
Picture
Arguably the biggest score of the weekend - a complete and untouched/undrilled 750 windshield. The top edge can be heated and reformed to edition 3 shape, something we can do - what we can't do easily is make one of these ourselves, these are ordered parts - this is a HUGE savings on my build.

Needless to say, I am truly thankful to Ghazan for his generous donation.  He could have just tossed these away (frankly I'm surprised no one else came forward to take them) but he didn't - he just wanted someone else to use them on an airplane.  Estimates are hard to  nail down because I have no idea what this stuff would cost to ship, but conservatively?  I saved about $800+ by picking up these surplus (to another builder) parts!

One of the coolest things I've learned about the homebuilding community is how keenly interested everyone is in other people's builds and more importantly successes.  I have or am learning the skills to make these work for my build and that works for me, whereas Ghazan is happy to build from a factory kit.  Either way we share a common bond - dream, build, fly!

Thanks for reading!
0 Comments

mein Vergaser ist angekommen !!

13/2/2018

0 Comments

 
Yup, I said it..... no, I can't speak german... thanks Google translate.....ha ha!

​​The Corvair authority William Wynne talks extensively on his blog about different carb applications in a Corvair conversion and the importance of keeping things simple.

The dual  (and sometimes quad) factory Rochester carb setup on a Corvair car engine not only complicates matters (syncing throttles arms, etc) they were never designed for altitude compensation and mixture settings required in an aviation application.   The converted Corvair engine falls into the same horsepower range roughly equivalent to typical medium Continentals and Lycomings, approximately 100 to 120HP.  This requires a fuel delivery system capable of delivering an air to fuel ratio capable of supporting this demand.

Fuel injection?  I believe the advantages (no carb icing, small increases in HP) are FAR outweighed by the complex system components (injectors, return fuel lines, pumps, electronics, sensors, etc).  Keep it simple.

​The MA3-SPA carb as found on the O-200 continental and O-235 Lycoming is the definition of simple.  They haven't changed much since the 1940's and Marvel Schebler continues to make new ones today - in other words it works, simple.  Overhauled to new specs it's the perfect carb for my conversion.

​Finding one that is both inexpensive to obtain and overhaul becomes a problem due to this popularity.  A good core for rebuild can be found in the three to four hundred dollar range then count on six to seven hundred dollars to overhaul it.  Expensive, but not an area I want to save money on - engine reliability is important in flying!  The recommended overhaul shop (D&G Supply in Michigan) also will convert specific O-300 carb models to the Corvair specifications.

​Armed with this knowledge, I've been searching online for a suitable core.


A couple of weeks ago while surfing E-Bay, I came across a listing for an O-300 Marvel Schebler carburetor that would be suitable for my engine.  It's clearly an older one, but again the model number matches the acceptable models for conversion and the pictures showed well.

​Like anything on E-Bay, Kijiji or Craigslist it's a buyer beware mentality.  One has to consider the odds and what it's going to cost to ship.  In my case, the core I was interested in had no reserve pricing but the shipping costs weren't cheap - it was in Germany!  This compounds the pricing with the Euro being somewhat strong against the Canadian dollar.  Worth a shot.

​With this in mind, I did the responsible thing and figured out my maximum bid would be about 100 Euros.  I watched the days count down and was pleased to see my bid of 40 euros was enough to win!  With shipping and currency conversion the total costs came to $112 Canadian.  Not bad and certainly better than what I expected to pay for a core.

​"
Mein vergasser ist angekommen" (which means "my carb has arrived") on Friday and I picked it up at the post office yesterday.  My first look had me really worried as the box had a crushed corner and was split open at the top:
Picture

​There was a sticker on the box from Canada Post stating the box was damaged by the forwarding shipper.  Not good.  One of the fears shipping any item overseas or otherwise is theft.  Hope there isn't just a bag of sand in here!

​Opening the box, I smiled a bit finding a note from the seller:
Picture

​Opening the box further, it came apparent that the shipper used a lot of bubble wrap to protect the carb on it's journey, but more importantly there is a carb inside the wrap!
Picture
Picture

​It's definitely old, but everything seems intact and the throttle/mixture arms move freely.  The accelerator pump seems seized but that's typical of something that has been sitting on a shelf for a long time and that will be repaired as part of the overhaul.
Picture

​The data plate is intact and shows this is a model 10-4895 MS carb, typically used on O-300 engines.  This is a good carb for overhaul and conversion to the required specs for my Corvair!
Picture

​Glad I found this.  It will be sent for overhaul this fall.

​Back to the shop soon.
0 Comments

scrounging stuff and cutting from templates

25/6/2017

0 Comments

 
I made some excellent (small step) progress on my airplane build this past week.

Before I get into details, I want to share a bit of scrounging advice.  Don't ever be afraid to ask around when you are looking for something, be it materials or tools.

While building, Ron and I often get to talking about ways to save on costs.  One of the things that costs a bunch of money when getting it done by others is powder coating parts.  Powder coating is a dry finishing process that gives various materials a durable coating that can be much tougher than paint alone.  It's particularly good on non load bearing parts that may be handled regularly or exposed to friction.  Control columns and rudder pedals come to mind.

Powder coatings are based on polymer resin systems, combined with curratives, pigments, and other additives and ground to a fine powder.  A process called electrostatic spray deposition (ESD) is typically used to apply the resin to the metal substrate.  The process uses a spray gun which applies an electrostatic charge to the powder particles which are attracted to the grounded part.  After application of the powder coating, the parts enter a curing oven where, with the addition of heat, the coating chemically reacts to produce long molecular chains, resulting in high cross-link density.

That's the long way of saying "it sprays on and sticks really well after being cured in the oven".... ha!

Ron and I both figure the majority of the parts we might want powder coated should be able to be done ourselves.  Ron has a source for the powder coating gun and resins, we just need an oven.  Baking resins can generate a fair amount of unpleasant fumes, so we won't be using the kitchen!

I've been real fortunate over the course of the last few years to have several people I know come to me with leads on "airplane stuff" and I owe a bunch of that to talking to everyone I know about my project and plans.  Opinions regarding my sanity range from "wow, that's cool" to "you are bat-s%$t crazy dude!"  However, even if the vast majority consider me closer to the slightly crazy side of the scale, they do come to me when they hear of something.

In this case, when I mentioned that we were seeking an oven, Brenda noticed a Facebook post from a friend of a friend who was remodeling their kitchen.  Turns out they were giving away a built in Jen-Air oven!  Free!  Brenda messaged them, I hopped in the truck and 10 minutes later, it was in our possession.  We really don't need the stove top portion for baking parts so this is perfect:
Picture

We'll build a simple stand and wire it for power.  It will require some calibration tests to ensure the temperature settings are accurate as they need to be for the powder coating.  Not every oven is created equally as far as accuracy is concerned and oven temperature can drift as much as 25 to 50 degrees over time.

As for my airplane, I started to put the templates I made to use and traced out my first parts with them.

They worked real good.  A thick Sharpie marker leaves a good line for rough cutting:
Picture

Before making the rough cuts of individual pieces from the sheet, now is the time to drill the corner relief holes where reuired.  Here are some that I remembered to drill before cutting them out.  Much easier to do this before hand I've learned!
Picture
Picture

Once the parts are rough cut out (thicker pieces on the bandsaw), further fine cuts are made using hand tools.  By always leaving a bit of the thick marker line, we can see where the part will be trimmed down with the grinder, a file or hand sanding when taking of the burrs.
Picture
Two flapperon control horns made from 0.090 aluminum. The one on the left has been final cut to size and awaits deburr and sanding. The one on the right is headed to the grinder to smooth out the corners and obtain final sizing.

I made several parts over a couple of hours:
Picture
Left and right side elevator nose ribs prior to final deburr/sanding, template at the bottom.
Picture
Top from left to right, templates. Bottom from left to right the matching horizontal stabilizer centre hinge bracket, toe-brake pedals and the finished flapperon control brackets. They are all deburred and smooth, ready for bending and assembly when required.

I took a good idea from Ron and taped the template to the parts when they were done.  That way I don't have to write the part numbers on the aluminum.  These completed parts will be stored until I need them later.  I'm keeping a massive spreadsheet to track parts made, where they are stored and what inventory of materials I have on hand:
Picture
Elevator nose ribs (top) and elevator rear ribs (bottom)
Picture
Some of the parts I managed to get done, ready for storage until needed.

I know I have a TON of parts still to make, some simple, some complex.... but there is something so motivating about making these first parts for my 750 that makes me want to be in the shop full time.  Unfortunately without spending at least some of my waking hours at my paying job, I can't afford the materials to make parts, so I guess I'll have to get back to the shop when I can.

Next up, further repairs to the 701 wing and I'll finish the sub assembly parts I need for the tail group on my 750!
0 Comments

some shop time and upcoming road trip

20/9/2016

0 Comments

 
Snuck over to the shop for a couple of hours Monday morning.  I'm trying to squeeze in time when I can and a few hours in the morning before I head to bed for my afternoon pre-nightshift nap works perfectly.

Work continues on the 701 wing repair/rebuild.  I managed to fabricate my first replacement piece, a rear wing channel.  It took some time to figure out how to use the sheet metal bending brake, but I got it done.  Here you can see the original bent and mangled one on the right and my new one on the left.  The previous builder for some reason made his channel with a thinner gauge of material than what the plans call for.  I'm all for saving weight and money, but this is a critical structural component, not something I would consider worth skimping on: 
Picture

Next was removal of the damaged nose skin.  As part of the repair/rebuild, Ron is planning on extending the wing by a couple of feet.  We'll cut out the damage, fabricate a tip extension to the main wing spar and add a rib where required.  A new nose skin and upper/lower wing skins and will be cut and fastened to the originals.  Of course, this means drilling out more rivets.  I suspect there will be times this will come in handy when I make mistakes on my own build!

This picture shows the extent of damage.  What do you think..... is this creased too far to be "popped out"?
Picture
Picture
Picture
The line and arrow mark was put on there as a reminder of what direction the skin needed to be removed. Somthimes as you flip the wing over on the bench, it's good to have a reminder which direction you are working in!

I drilled out the rivets on the closest good rib to allow some flexibility when cutting the bad nose skin.   We'll trim it cleanly back to the rib to enable a clean joint with the new extended skin.  These empty holes will become part of the stronger joint as a result.


As always, I'm keeping my eyes open for good deals on things I need for my project.  Surfing the classifieds section of the Ultralight Pilots Assocication website, I came across an individual selling a complete rudder section for a CH750 for an amazing price that was too good to be true!  A quick game of phone tag and the seller and I agreed to meet on Friday this week.

On the road again.....  can't wait to get on the road again.....
0 Comments

THE AMAZING VIBRATING CLEANING MACHINE PART two

23/3/2016

0 Comments

 
Previously on part one.....

Without the resistance of the blower fan and suction of the vacuum filter assembly, this motor spins way faster than what the label states.   So fast in fact it wants to tear itself apart while merrily dancing across the shop floor despite being mounted on springs (or maybe because it's mounted on springs?)

So, I need to figure out a way to slow the motor down or reduce the vibration component.

My first thought is to reduce the size of or modify the shape of the metal strip I added to the motor axle.

I think doing this only reduces the vibration.  The motor will still be spinning way too fast and determining the right size of strip may be hit and miss to get exactly right.

How about controlling the motor speed?  I think this will be the easier route.

Digging through my box of household electrical stuff, I found two incandescent dimmer switches that should work.  They are designed for AC power (as is the electric motor) and this would add the ability to fine tune the vibratory effect for best results.

Before that however, I need to finish creating the parts bowl.  First I inverted the bowl and traced a circle on a piece of spare lucite (plexiglass):
Picture
Picture

Cut the circle out using my bandsaw......  that's when I realized the centre section of the bowl sits above the rim:
Picture

​So, drill a hole to fit:
Picture
Picture
To secure  the new lid, I used a piece of hollow threaded rod.  I screwed it into the top plate of the tumbler and l left it long enough to add a cap to hold it down tight to the bowl:
Picture
Threaded rod in place to hold the lid - the black squares are velcro pieces to hold the bowl in place
Picture
See through lid fits great - the nut that appears to be floating is sitting on top of the lucite lid

To hold the lid, I found an old powder scoop that fits perfectly over the bowl centre.  That and a washer and nut hold everything down nicely:
Picture
Picture

Now that everything is built, back to slowing down the motor.

I added in the rotary dimmer switch.  It has an off position when turned counter-clockwise all the way.  I'll tide up the wiring once I figure out if this is going to work as designed.  The picture was taken prior to creating the lid.  Using the dimmer works!
Picture

Time to test the machine....

First, add the tumbling media, in this case a couple of scoops of clean clay cat litter.  Then add some dirty, greasy and rusty test parts:
Picture
Picture

Close and fasten the lid..... all secure and "go for power-up!"  The vibrating of the tumbler makes it hard to get a clear picture, but the media very quickly envelops the parts.  As it tumbles, they occasionally come back up the top: 
Picture

The tumbler is NOISY!  I suspect the bolts between the levels of the tumbler are vibrating against the bowl.  That should be easy to fix.  Perhaps it might have to be run outside.  After letting it run for about five minutes, I decided to have a look at the progress.  Even after only 5 minutes, the parts are obviously cleaner and devoid of the grime they entered with:
Picture
valve cover clamp
Picture
wheel nut

Although the parts come out a bit dusty, clearly this method and machine I've built works very well, even at a short duration.  I'm planning on running a longer test this afternoon and will post more details.
0 Comments

the amazing vibrating cleaning machine part one

22/3/2016

0 Comments

 
So as I mentioned previously, I have a pail full of loose hardware (bolts, nuts, washers etc.) that are completely covered in dirt, grime and rust.  I pondered using my daughter's rotary rock tumbler, but learned that the interior of the drum can get destroyed by the tumbling medium and the metal parts.

A quick Google search led me to this post on how to make a Vibratory Tumbler:

http://www.instructables.com/id/Home-Made-Vibratory-Tumbler/ 

The tumbler described in the link above is for rocks, but the concept is simple enough, perhaps I can come up with something for cleaning my parts.  Another Google search led me to this You-Tube video:

Now that seems more like the type of task I'm trying to accomplish!  And the cleaning media is cat litter!

Shouldn't get much cheaper and easier than that!  Let's build one!

First, I obtained the following two items from the Value Village thrift store:
Picture
Aluminum Bundt cake pan - $1.99
Picture
120 volt handheld vaccuum - $4.99

I tested the vacuum in the store before purchasing it to make sure it worked.  It was missing the nozzle extension, so as a vacuum it really was worthless.....  but it's the 9000 rpm electric motor that's inside I'm after.  Recycling at it's best!

Remove the filter section and split the main case open:
Picture
Picture

Remove the motor/blower assembly and filter gasket:​
Picture
Picture

​Pry off the outer housing with a small screwdriver and remove the blower fan:
Picture
Picture
Picture

I removed the plastic backing plate leaving just the motor assembly.  The mounting screws are quite short so I needed a thin board to mount the motor to.  I had an old poly cutting board (white one on the bottom of the picture below) that I wasn't using for anything.  I drilled out a large hole in it for the motor axle and two smaller holes for the mounting screws.  The upper board is where the bowl will sit, for this I used a piece of scrap laminate flooring I had kicking around.  I used 6 inch bolts with lock washers and nuts to space them apart enough to fit the motor in between.  This whole assembly will be the vibratory part:
Picture
6 inch bolts, lock washers and nuts approximately $5.00

Next, I mounted the vibratory assembly on compression springs I bought in the surplus aisle at Princess Auto.  Then the whole thing is mounted on a base of wood:
Picture
The camera messes up the proportions, the boards are spaced much more evenly than what it shows. Springs $2.00

Next I mounted the motor.  In the vacuum, it was designed to spin at high speed and very smoothly.

In my application, I want the motor to continue to spin at a high speed, but to also vibrate at high frequency.  To accomplish this, I attached a small strip of scrap metal to the fan mounting bolt/axle of the electric motor:
Picture

So...  thinking all was good, I figured it was time to test it.  I very quickly learned that the motor was designed to power the blower fan with the added resistance of trying to move the air through the vacuum filter.  Although I did plug in the motor and tested it once I had it outside of the vacuum housing and disconnected from the blower I didn't think much of it.  However, without this resistance, I believe the motor spins much MUCH faster than it's rated RPM.  Adding the attached metal strip and the whole assembly almost jumped and bounced across the shop floor base and all when I applied power.  I should have tested this before mounting it, but it probably would have ripped my hand off in the process.

This obviously won't do.

More to think about..... stay tuned for part two.

​
0 Comments

Unloading and first look

1/3/2016

2 Comments

 
So here is a first look at some of the highlights of my find.
There are a LOT of parts to go through and inventory, but I can't begin to explain how stoked I am about my acquisitions.

Most of everything is either salvageable as is, prime for exchange as a core for re-manufacture, or trade-worthy for other things I will need.

Casting numbers (T1208RH) on the dis-assembled core block indicate a 1965/66/67 110HP "automatic transmission no smog" block manufactured on December 8th in either 1965, 66 or 67.

The casting numbers (3878566) on the heads from this core indicate 110HP from 65, 66 or 67.

These are prime candidates for conversion.  Two things I haven't found in the boxes yet are the camshaft (but that isn't a game-stopper as it will be replaced by a custom cam anyhow) and the push-rod tubes (cheap to purchase new).  Everything else important seems to be there.

The original cylinders, pistons and rods from this 110hp core are in great shape and will be excellent core exchanges.

The crankshaft is the correct model (8409 cast iron) for conversion.  It has already (as far as I can tell and was told) been drilled for the prop hub and safety shaft.  I'm not sure if it has been nitrided or not, should be easy to find out.  Huge savings having this already complete.

The new in box pistons I got with this lot have been superseded in the latest conversion plans with dished and forged aluminum pistons.  Perhaps these can be traded or sold.

​I paid a bit extra to obtain the prop hub assembly.  It includes the machined safety shaft called for in the conversion plans.  A new one from William Wynne costs over $500USD, I got it for $50CAD.  Great deal!

The second core is still almost completely assembled and appears on the outside to be super clean.  The valve covers even have some of their factory chrome finish left on them.  The cooling fins are real nice and straight on both the cylinders and the heads.

Casting numbers (T1214RM) on the dis-assembled core block indicate a 1965 or 66 140HP "manual transmission no smog" block manufactured on December 14th in either 1965 or 66.  It would be neat to know if both this and the other 110HP block were made within 6 days of each other!

The casting numbers (3878570) on the heads from this core indicate 140HP from 65 or 66.

This block is also a prime candidate for conversion.  The heads however would have to be directly  replaced with 95HP or 110HP heads.  They will be of value to someone, probably a car rebuilder (140HP heads are rare).  Of course the crank and camshaft are still inside and the push-rod tubes are there as well.  I haven't looked inside this motor yet Everything else important seems to be there on this core too.

Although not pictured, Paul also included new in the box set of chrome piston rings and a David Clark headset (which appears new from the box!).

So, I think it's fair to say I've got a running head start on my engine project.  A complete inventory is next.  Time to buy some storage totes :)

On another note, I'd be remiss in not mentioning the support for this mission that has been given to me by my wife Brenda.  She always seems to guide me away from to good to be true deals to hidden ones like these.  Thanks - I love you.
2 Comments

Happy Birthday to me!

24/2/2016

0 Comments

 
Well...  I made it to 46 years old.  How I did that and didn't end up in jail, dead or otherwise is anyone's guess.

A couple of important updates to report that happened to coincide with my birthday.

First, I think I might have finally found a core engine.  In fact, I might have found TWO!  I responded to an ad on Kijiji posted by a guy in southern Ontario and spoke with him this evening.

Best part?  These cores were destined to go into a couple of Pietenpol Aircamper projects he was involved in so they "should" be the right type!!  
Picture
The Pietenpol Air Camper is a simple parasol wing homebuilt aircraft designed by Bernard H. Pietenpol. The first prototype that became the Air Camper was built and flown by Pietenpol in 1928. In the 1960s Bernard Pietenpol began to favor converted engines from Chevrolet Corvair automobiles.
I'm heading down this weekend to have a look.

Also tonight, I ordered the William Wynne Corvair disassembly DVD which guides builders towards taking apart a core and what trouble areas to look out for.
Picture
from shop.flycorvair.com website
All in all a great way to spend my birthday!
0 Comments

Road trip

21/1/2016

0 Comments

 
Decided to go for a drive yesterday and have a look at that core engine that I missed seeing last week due to weather.  Also did some shopping for workshop stuff and had lunch with my dad Jim and Barry's wife Linda.

In the afternoon, I finally made it to the home of the guy I've been speaking with on the phone on and off for a month or so.  Ed is a salt of the earth retired gentleman, looking to clean out his collection of "anything mechanical" as he calls it.  He is a retired machinist and tinkerer with a focus on antique tractors and building working models of late 19th / early 20th century internal combustion engines.  A quick look around his barn (it was kinda dark in there) shows both his attention to unique and rare items and also lots of discarded stuff he picked up at junk sales and auctions.  Unfortunately, a good bunch of it never made it to the restoration phase and now he just wants to start clearing it out.  It's kind of like the places Mike and Frank from American Pickers love to go digging in.

Climbing up an old wooden ladder into the loft, Ed leads me to a corner of the upper barn floor where he uncovers the Corvair engine we've been chatting about.  
Picture
Cut right from the donor car it came from, it sits still attached to it's transmission and motor mounts.   Everything appears to be there, but my first glance tells me this is probably at best a 1964 model, but likely 1963 or earlier.  I can tell by the generator mounted on the top front corner.  GM started to replace generators with modern alternators around this time, so it's still possibly a 1964.

One of the issues that made me want to attend in person to see this core was that Ed is not online or using e-mail, so describing where to find the casting numbers verbally is an issue.  He did have a look, but the only number he found was the cylinder firing order stamped on the cooling shroud.  This is the same for all Corvairs regardless of year, so not much to tell from that.

Scraping under the requisite dirt and grime, we found the engine casting number:
Picture
T = Tonawanda

12 = December

18 = 18th day of December

YN = many possible blocks (damn)

According to my manual, YN engine block code was a commonly used code meaning the engine could be from 1961, 1962, 1963 or 1964.  It gets even more clouded as the 1960-1963 engines were either 140 or 145 cubic inch engines.   From 1964 onwards the displacement was 164 cubic inches (the block I need) but the 1964 engines have smaller head gaskets making them less suitable for conversion than later versions.  Some 164 cubic inch engines were rated at 95 hp and do not have the harmonic balancer (torsional vibration dampener, also needed for the conversion).   This doesn't account for cars built towards the end of 1963 that might have 1964 generation motors in them.

Although it is possible to use a 1964 block, it's not ideal.


Okay, what about the heads?  Are they usable?  Don't know until we check the casting numbers.  Which for some reason don't exist!​
Picture
Right side head
Picture
Left side head
I started by cleaning off the crud with brake cleaner and then used light application of a wire brush.

I don't know if the casting numbers are missing from the heads, or perhaps they've corroded away completely but they aren't visible, even with a good light source.  The one in the left picture (above) doesn't seem that badly corroded to obliterate the casting numbers, but I'll be damned if I can find them anywhere.

Another oddity is a stamped number "3" that appears to have put there sometime after leaving the production line.
Picture
So this just deepens the mystery of what exactly this motor is.

I borrowed a 1/2 inch drive extension (something I need to add to my "go-kit") and tried to turn over the engine using the front pulley bolt.  Solid as a rock (didn't expect it would turn).

Peeking through the cooling shroud, the fins of the heads seem clean enough, but you can't tell anything from a little peek.  The rest of the engine shrouding and valve covers seem pretty roached.

I think I might offer to purchase the whole thing for scrap value alone to use as a practice engine to disassemble.  Perhaps there might be some value in that or some of the internal components I can trade with or send in for core exchange.

The quest continues..... <sigh> 
0 Comments
<<Previous

    Time until takeoff

    Author

    Husband, father and 911 dispatcher.  Long time pilot with a licence that burns a hole in my pocket where my student loan money used to be.  First time aircraft builder. Looking to fly my own airplane.

    Categories

    All
    Airframe
    Airport
    Avionics
    Decisions
    Engine
    Interior
    Keep Looking
    Mentor
    Milestone
    Mission
    Motivation
    Paperwork
    Philosophy
    Priorities
    Scrounging
    Tools
    Ultralights
    Welcome Aboard
    Workshop

    Archives

    December 2019
    November 2019
    September 2019
    August 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    June 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    February 2017
    January 2017
    December 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015

    RSS Feed

    build log

    Item Hours
    Engine 31
    Tail 98.5
    Wings 24.5
    Fuselage 0.5
    Interior 0
    Controls 1
    Avionics 0
    Other 18
Powered by Create your own unique website with customizable templates.