Jason builds a plane

Can see the 701 wing repair finish line

19/2/2019

0 Comments

 
Sunday was a good day in the shop, and both Ron and I can see the finish line with the 701 wing repair and extension.  Just a few more small items to go.

As Ron gets close to covering his Aeronca Scout with fabric, we've been discussing his plans to make a fabric/pain rotisserie rig for the shop.  You may recall from way back in this blog an engine stand I bought for my Corvair.  With my engine parts in Florida for rework, we're going to modify my engine stand and Ron's engine stand to become the end pieces for the rotisserie.  This rig will allow us to  mount any fuselage, wing or other large parts for priming and painting and being able to rotate them will be very helpful.
Picture
Picture

The inboard nose skin is ready to be installed.  I clamped the skin in place, lined up along the spar.  To draw the nose skin tight, ratchet straps are used, pulling the skin tight across the ribs.  It's important to place the straps directly over the nose ribs to prevent caving in the nose skin before it is riveted.
Picture
Picture

Straps are equally tightened until the nose skins lay tight against the nose ribs and spar:
Picture

Folded protectors distribute the force across the trailing edge, thin scraps of wood protect the surface skins from the ratchet and strap hooks.
Picture

Using the hole duplicator, I matched the new nose skin to the original spar holes on the upper side of the wing.  These were drilled to final size, the nose ribs to A3 until final fitting.  The 3rd rib is drilled, but missing clecos so I can fit the outboard nose skin where it will overlap the slat pickup.
Picture
:
Once measured up, the outoard skin needs to be slotted to allow the slat pickups to protrude through.  The easiest way to do this is with a trim router and spiral up-flute milling bit.  I laid the outboard skin out on the table and set clamped a straight edge in place as a guide.  Two strips of plywood under the sheet on either side of where the slot will be cut support the thin aluminum sheet and are thick enough to raise the bit above the table
Picture
Picture
Picture
The tool makes amazingly clean cuts requiring very little deburring afterwards.

After cutting all 3 slots perfectly straight, a valuable lesson learned - even if you right down the measurement, that is no guarantee that what you wrote down is correct :(

I measured the first slot as 395mm from the inboard edge, but for some reason I wrote down 595mm.  From that point on, every time I double checked before cutting the slot, I measured/checked it as 595mm.  Bringing the sheet back to the wing, my error was immediately obvious.
Picture
Slat on the lower left, slot in the skin above - not where it should be :(

After pacing around the shop wondering how I could have possibly messing up the measurement, Ron told me he could fix the error fairly easily with a simple patch - go ahead and cut the right slot.  This is part of learning and too much sheet metal to start over.

With the correct slot cut, all the slots lined up perfectly with the slat pickups - minor crisis averted.
Picture
Kind of a weird look, but the inside of the nose skin reflects the nose ribs before being rolled over.
Picture
Picture
Holding the skin in place with small spring clips - after all the work I'd hate to drop the skin and ding an edge!

Before working on securing the top side of the outboard nose skin, we thought it best to finish securing the inboard nose skin, that would give us a solid reference point for the outboard skin.  We flipped the wing over and end for end on the bench.  To get the nose skin flat, a thin strip of wood is placed under the ratchet straps.  Once lined up and tight against the ribs, I again duplicated the spar holes and drilled the ribs to A3 size.  Everything lined up excellent.
Picture

Even this nose skin, as small as it is lengthwise makes the overall wing so much more rigid. A good sign.

​While waiting to discuss my slotting error I also unrolled my 040 sheet and start marking out the 3 horizontal tail doublers I need.  I was initially really surprised at the amount of tape Aircraft Spruce used to secure the roll, but quickly understood why!  There is a bunch of pent up spring energy in that roll, and I had to be real careful about wrangling it onto the flat floor for measure/cutting.  The longest piece I need from this sheet is 1440mm long, so it was safe to cut that length off the end of the 12 foot long sheet. I marked and rolled the balance back up (that was a task!)  and put it back into storage.

Aircraft Spruce ships all their sheet aluminum with a protective plastic sheet coating on both sides.  Depending on how long the sheet has been on the shelf, room temperature, and other factors determines how easy it is to remove this coating.  I think next time I'll gently warm it with a heat gun or hair dryer - this stuff sticks too good.  For now, I've only removed a few inches from the edge I'm cutting from.
Picture

Even cut down to length, this sheet is awkward to put in the bender for scoring, and it's thick enough to making scoring a very long process.  Instead, Ron and I think we are going to try using the router we used on the nose skin slots to accomplish the long cuts.  If this works as we think it will, we'll use the same process for the wing spars (032) and maybe the fuselage sides/tops - anywhere a long straight cut on a large piece of material is needed.  As I said above the tool makes really clean cut edges that require little in the way of deburring.

One other thing I've been doing is adding some of the complex shapes from the plans into CAD.  Like my smaller parts (ribs, plates, etc.), these will be printed out to provide templates.  One example is the wing root nose skin.  I use a free downloadable 2-D CAD program called LibreCAD - it is very simple and more importantly it will accept the X/Y co-ordinate system common in the Zenith plans:
Picture

If you like doing things in 2-D CAD, you can download a free copy of LibreCAD here.

For those that have been asking, my finger is healing up nicely :)

More soon, thanks for reading.
0 Comments

More fixes.... surprise.... not.

29/12/2018

0 Comments

 
Back in the shop today....  a full day to get lots done.

Started the day by cleaning up some of the small details for the flap brackets and assorted attachments.  Surprisingly, most of these are actually good (contrary to most of what we've found during this repair).  All four original flapperon brackets are stripped of paint, final sanded (not done by original builder) and clecoed in place.  Final riveting will happen when we align the flaperrons.  The new fifth one is already for final rivets and paint.
Picture

As with the flapperons, the wing extension we've added will require the slats to be extended too, meaning an additional slat support will need to be added.  But first, I had to assess the current ones for condition and fit.

It became very apparent that the slats were installed with the same random carelessness of everything else on this wing.  I really think most of the holes drilled by the original builder were done blind.

Here is the first one I I looked at.  Clearly not to plan specs.  Don't think those two top rivets will hold much, do you?
Picture
Picture

Drilled them out and not surprising, the nose rib looks like swiss cheese.  No way we'll leave it that way or try and drill new slat supports to match either.
Picture

We decided to add doublers on both sides of the ribs that require this (we replaced several damaged ones with new already) in order to sandwich things together and give us fresh material to anchor to:
Picture
Inside nose rib flange
Picture
Back side of flange

Taking a closer look at the slat supports, we determined that these too were randomly sized.  Stacking them shows this well, none of the holes align, let alone match the plans:
Picture
Here are the three originals, stacked for comparison - all different sizes, all different holes - how the hell did they align the slats when they installed them? Thank goodness we are building all new slats for this wing!
Picture
The correct size is on the bottom - they weren't even close!
Picture
Random holes on the nose, no apparent reason?

So, like a lot of other things, we are replacing these with new.  This of course means making new bent strips that will support the nose skin and required slot for the slat support.

Making the bent strips was fairly straight forward and and glad they turned out well.
Picture
Standard "L" cut to length and deburred - then marked as per the plans (shown to the left of the "L" above)
Picture
Drill and debur relief holes along the inside bend
Picture
Slots cut from edge to relief holes - debur
Picture
Relief holes and slots allow preliminary bending of strip - final bend to be completed once installed with slat support on nose rib

It's very important that all slat supports are aligned the same, both for aerodynamic reasons and alignment of the slats.  To accomplish this, the plans show how to create a positioning jig that puts the slat support in the correct position and alignment for riveting.
Picture
The slat alignment jig - made from plans. Here I'm confirming the measured holes I'm about to drill match up with the highly accurate holes in the alignment jig. Perfect fit!
Picture
The slat support holes are drilled to match the jig as per the plans and then the slat support its clecoed to the alignment jig (the red pieces). This puts the slat in position for drilling holes to the nose rib
Picture
Same assembly from the slat side of the alignment jig. Consistent and correct measuring and drilling of holes makes all the difference in a well built airplane

​The bent strip is added and pre-drilled for fit:
Picture

The whole thing is re-assembled back in the jig for final drilling:
Picture

Disassemble again, debur, re-assemble and final rivet:
Picture

Managed to to get two done in about an hour.  The second one went easier now that I know the process.  With the second in place, it's clear the efforts to do it right are paying off.  There are five in total so three more to do.
Picture

A view from about mid wing looking out towards the tip.  A closer look shows perfectly aligned slat supports - yes!

That was a good day of work.  Next up is finishing the other three slat supports and prepping the nose skin.

​Thanks for reading :)
0 Comments

bought some metal and a couple of new tools

9/9/2017

0 Comments

 
The last week of summer has come and gone.  We made a family mini vacation to southern Ontario and took in the Brantford Community Charity Airshow among other things.  It was an awesome airshow with quite the collection of warbirds, aerobatics and of course the Canadian Forces Snowbirds!

​Also located at the same airport is Aircraft Spruce, one of the biggest suppliers of aircraft parts, pilot gear and building supplies.  I had placed an order the week before and was able to pick up 3 rolls of aluminum sheet to be used in my build.  Ron and Donna were also at the airshow and were kind enough to bring the rolls back north with them to the shop, saving us having to drag them around on the rest of our family trip.

​I also stopped at KBC Tools in Missisauga and picked up a couple of really handy items.  First, I've been reading about how to cut long straight edges on aluminum sheet.  Some of the spars and doublers I have to make for my airplane are too long to be easily cut by shears.  Even local machine shops in my area  are either unable to handle the widths or too expensive.

​One of the solutions on the Zenair builder's forums caught my eye.  It involves making a aluminum cutting knife out of a carbide machine shop grooving insert attached to a handle, in this case a old crescent wrench.

​I found the grooving insert at KBC tools.  It's expensive for it's size, but is able to make very thin cuts in aluminum.  For a couple of dollars more, I opted for the Titanium nitride coated insert making it more durable:
Picture
Picture
Side profile showing the cutting ends. It's hard to show in the picture, but the cutting surface on each end is only 19 thousandths of an inch wide. It's used for making grooves in machined metal, like for O-rings etc.

​For a donor handle, I used an old crescent wrench with a seized head.  I cut the head off at a 110 degree angle at the narrowest part of the handle using the chop saw:
Picture
Picture

​Cleaned it up on the grinder.....
Picture

​Next I used a combination of Dremmel tools and hand files to carve a shallow groove in the handle for the insert to rest in:
Picture
Insert to handle layout
Picture
File and grind a shallow groove, drill mounting screw hole on drill press
Picture
Tap the hole for 6/32 NC cap screw thread
Picture
Install insert and tighten screw
Picture
I took it apart again and used the grinder to clean up any sharp edges on the handle that may scratch the aluminum when making a cutting pass.

​I made a test cut on a scrap piece of aluminum and this tool cuts it nice, clean and straight and only requires a couple of passes to score the aluminum enough for breaking.  MUCH faster than using a laminate blade like an Olfa.

​The other tool I picked up at KBC Tools was a NOGA Rotodrive countersink/deburring tool:
Picture
Picture

​This is a much quicker and simple way to deburr dril holes.  It is a rotating "dog-leg" countersink and with a very light touch and two turns will remove drilling burs without countersinking the hole.  Lightweight and fast, it will be super handy as I progress through building.  Much better than rolling an oversize drill bit between the fingers.

​I continued work on the wing tip extension.  I fabricated two (one for each wing) spar web doublers out of 0.032 sheet on the bandsaw. These will be the bread of the sandwich where the tip extension and spar web meet:
Picture
Picture

​Laid out the proper rivet spacing and matched drilled them together:
Picture

​Mounted the assembly to the wing spar web and match drilled the par caps, then clecoed everything together to confirm alignment:
Picture

​With the assembly temporarily in place, the next problem needs to be solved.  How to match drill to the original holes in the spar web (inclunding the orginal outer wing rib) without any access inside this part of the wing?  As you know, the previous builder just eyeballed things so measuring what is already there won't be accurate enough. I could pull more of the wing skins off and back drill through the new doubler, but there is an easier way!

​Introducing the "rivet hole duplicator".  This ingenious tool allows you to match drill to holes behind the sheet aluminum.  It consists of two straps of spring steel, one with a hole locator and the other with a drill guide:
Picture
Picture
Drill guide hole on left tang, locator pin on right tang.

​With this tool, it's simple to find the right spot to drill each pilot hole.  The pin tang slides in behind the panel you are drilling and the guide lines right up to where your new pilot hole should be..... GENIOUS!
Picture
River hole duplicator in use

​Duplicate holes on web spar (right side of joint centreline) are complete awaiting final rivets. We'll need to figure out what we are doing on the back side to extend the spar caps and sandwich everything together but for now, this should be easily repeatable on the second wing:
Picture

​With that complete, I took some time to fabricate the wing slat ribs from some spare 0.016 sheet.

​There are 12 of them required, 6 in each wing slat.  So I traced them out from the template, trying to use up as little real estate as possible.  This will become more important later on when cutting other multiple items from full sheets:
Picture

​One of the lessons learned earlier when I was making tail ribs was to centre punch and drill the relief and tooling holes before cutting out the metal, so I did that here first:
Picture
It takes a very light tap to make enough of a centre punch mark for the drill
Picture
Holes drilled and deburred, awaiting final cut and trim
Picture
12 slat ribs trimmed and sanded, waiting for bending. The other piece at the front is an access cover for the horizontal stabilizer, all complete waiting for installation.

​I discovered that the elevator tip rib form I traced out was undersized by about 2%.  So I corrected the form and made the tip ribs with the correct aluminum template.  Glad I caught this now, not later when I begin assembly.  Here they are awaiting bending:
Picture

​Very please at the progress I'm making.  Coming up this week, I'm going to the woodshop to final trim and sand my plywood form blocks and I'll start tracing out the longer spar and doubler pieces for the horizontal stabilizer and elevators.  Then I can start the assembly process!


​Progress!
0 Comments

scrounging stuff and cutting from templates

25/6/2017

0 Comments

 
I made some excellent (small step) progress on my airplane build this past week.

Before I get into details, I want to share a bit of scrounging advice.  Don't ever be afraid to ask around when you are looking for something, be it materials or tools.

While building, Ron and I often get to talking about ways to save on costs.  One of the things that costs a bunch of money when getting it done by others is powder coating parts.  Powder coating is a dry finishing process that gives various materials a durable coating that can be much tougher than paint alone.  It's particularly good on non load bearing parts that may be handled regularly or exposed to friction.  Control columns and rudder pedals come to mind.

Powder coatings are based on polymer resin systems, combined with curratives, pigments, and other additives and ground to a fine powder.  A process called electrostatic spray deposition (ESD) is typically used to apply the resin to the metal substrate.  The process uses a spray gun which applies an electrostatic charge to the powder particles which are attracted to the grounded part.  After application of the powder coating, the parts enter a curing oven where, with the addition of heat, the coating chemically reacts to produce long molecular chains, resulting in high cross-link density.

That's the long way of saying "it sprays on and sticks really well after being cured in the oven".... ha!

Ron and I both figure the majority of the parts we might want powder coated should be able to be done ourselves.  Ron has a source for the powder coating gun and resins, we just need an oven.  Baking resins can generate a fair amount of unpleasant fumes, so we won't be using the kitchen!

I've been real fortunate over the course of the last few years to have several people I know come to me with leads on "airplane stuff" and I owe a bunch of that to talking to everyone I know about my project and plans.  Opinions regarding my sanity range from "wow, that's cool" to "you are bat-s%$t crazy dude!"  However, even if the vast majority consider me closer to the slightly crazy side of the scale, they do come to me when they hear of something.

In this case, when I mentioned that we were seeking an oven, Brenda noticed a Facebook post from a friend of a friend who was remodeling their kitchen.  Turns out they were giving away a built in Jen-Air oven!  Free!  Brenda messaged them, I hopped in the truck and 10 minutes later, it was in our possession.  We really don't need the stove top portion for baking parts so this is perfect:
Picture

We'll build a simple stand and wire it for power.  It will require some calibration tests to ensure the temperature settings are accurate as they need to be for the powder coating.  Not every oven is created equally as far as accuracy is concerned and oven temperature can drift as much as 25 to 50 degrees over time.

As for my airplane, I started to put the templates I made to use and traced out my first parts with them.

They worked real good.  A thick Sharpie marker leaves a good line for rough cutting:
Picture

Before making the rough cuts of individual pieces from the sheet, now is the time to drill the corner relief holes where reuired.  Here are some that I remembered to drill before cutting them out.  Much easier to do this before hand I've learned!
Picture
Picture

Once the parts are rough cut out (thicker pieces on the bandsaw), further fine cuts are made using hand tools.  By always leaving a bit of the thick marker line, we can see where the part will be trimmed down with the grinder, a file or hand sanding when taking of the burrs.
Picture
Two flapperon control horns made from 0.090 aluminum. The one on the left has been final cut to size and awaits deburr and sanding. The one on the right is headed to the grinder to smooth out the corners and obtain final sizing.

I made several parts over a couple of hours:
Picture
Left and right side elevator nose ribs prior to final deburr/sanding, template at the bottom.
Picture
Top from left to right, templates. Bottom from left to right the matching horizontal stabilizer centre hinge bracket, toe-brake pedals and the finished flapperon control brackets. They are all deburred and smooth, ready for bending and assembly when required.

I took a good idea from Ron and taped the template to the parts when they were done.  That way I don't have to write the part numbers on the aluminum.  These completed parts will be stored until I need them later.  I'm keeping a massive spreadsheet to track parts made, where they are stored and what inventory of materials I have on hand:
Picture
Elevator nose ribs (top) and elevator rear ribs (bottom)
Picture
Some of the parts I managed to get done, ready for storage until needed.

I know I have a TON of parts still to make, some simple, some complex.... but there is something so motivating about making these first parts for my 750 that makes me want to be in the shop full time.  Unfortunately without spending at least some of my waking hours at my paying job, I can't afford the materials to make parts, so I guess I'll have to get back to the shop when I can.

Next up, further repairs to the 701 wing and I'll finish the sub assembly parts I need for the tail group on my 750!
0 Comments

more corrections.....

23/5/2017

0 Comments

 
So back to the shop on yesterday, looking forward to flanging the root rib lightening holes.

When I set the flanging die up on the bench, I noticed that although my lightening holes are cut to a perfect 65mm diameter as per the plans, the outside diameter of the flanging tool above the shoulder (the one on the left) is also exactly 65mm, making it too tight a fit in the hole, and impossible to work correctly:
Picture
Picture
The flanging die put together

This means the holes I cut in the rib will need to be expanded just slightly.

There are a couple of ways I could accomplish this.  To sand/grind the aluminum away to make the hole bigger would be quicker, but next to impossible to maintain a perfectly round circle.

Going back now with the flycutter set slightly wider presents an issue because there isn't any metal in the middle of the hole to centre the flycutter on and there is an increased risk of tearing.

I really didn't like the idea of ruining the perfectly symetric holes by grinding and hand sanding would take forever.  Flycutter it is then!

To make another cut, I needed to add a piece of scrap aluminum to the back of the rib.  Luckily, I have just the piece left over from the damaged rear channel (always save stuff you might use later).  Here the sacrificial piece is riveted in place on the back side of the rib:
Picture
Finding the original centres of the holes was easy - scribe an arc from 4 different edges equal to half of the diameter. Where the arcs meet is your centre. My highschool geometry teacher would be so proud!
With slow and careful application of the flycutter, the new diameters are cut, maintaining the centricity of the circles.  Now I know to make the lightening holes slightly larger to fir the dies.  I'm pleased it worked okay, I was real concerned removing such a small amount may lead to a tear in the rib:​
Picture
"Front" side with newly enlarged lightening holes
Picture
"Back" side, showing where the flycutter was almost working it's way through the scrap.

A quick drill out of the attachment rivets and voila, one rib ready for deburring (again) and flanging:
Picture

Deburring the lightening holes is very time consuming.  I think I'm going to investigate what 3M Scotchbrite wheels will work on them.

The process to flange the holes using a die is much quicker than working them by hand tools.  First, set the rib on the male side of the die:
Picture

Place the female side of the die on top, making sure the flange will press out in the correct directions according to the plan (in this case the same as the outside edge flanges):
Picture

Although it would be much faster in a hydraulic press, enough force can be exerted using a C-clamp and the bench top edge to accomplish this.  For this size die, one clamp is enough, but on larger dies, multiple clamps would be used:
Picture

Squeezing of the clamp leaves a wonderfully even and clean flange:
Picture

Now that understand the process, making the ribs for my 750 will be much quicker.

I finished the day by doing further final work on the missing wing root doubler.  Lots of back drilling of pilot holes, final match drilling and thinking about what can be riveted ahead of other items etc.  I'm to the point of having everything ready for final fitting.  I flipped the wing over to get better access to the doubler.  The wing attach fitting in the lower left is the bent original with the terrible out of round bolt hole.  I've clecoed back in place as a guide for backdrilling out the web doubler and new wing attach bracket: 
Picture

So far so good.  I'm really getting a handle on what it means to pilot drill, cleco, match drill, cleco, take apart, deburr, cleco again and final drill.... just to take apart again for deburring, cleco and final rivet.  All  important steps that mean a well built airplane.... something that the previous builder didn't seem to understand.
0 Comments

time to use the fly cutter.... the what?

10/5/2017

0 Comments

 
Got to the shop this morning for a couple of hours.  Trying to squeeze in a bit of time here and there before going to sleep before nightshifts.

First thing I finished off was the fuel tank bay inboard wing rib cap repair.  Finished deburring the holes, both the old bad ones and my new ones to prevent any further cracking.  The new cap repair is really stout and should give a great surface to attach the wing skin back on compared to the original rib flange which was mangled by the previous builder:
Picture
Picture

The missing wing root doubler has been drilled according to the plans and is clecoed in place.  I've yet to decide which order to rivet this in place, but I'm going to wait until we have all the other items (nose rib, root nose rib, root rib, wing attach bracket, etc) gathered so I can test assemble and measure everything.  This took a lot of careful back drilling through the spar web to get it right, and I'm happy with it so far:
Picture
Picture

In a lot of places of any given airframe, the designers of light aircraft take advantage of the inherent structural strength of aluminum to lighten the overall structure of the aircraft (lighter is better).  A common method is the use of lightening holes.  You can see them (the large circles) in the spar web of the above picture.

Lightening holes serve a number of purposes besides weight reduction (obvious).  Wiring, hydraulics and or fuel lines can be passed through these easily.  It also provides an opening for inspection of control linkages that might be inside otherwise closed cavities without having to remove the skins.  The most common place they are used is in wing ribs, including the replacement root wing rib I'm currently making for the 701.

Lightening holes are also flanged which provides even more rigidity to the part (more on this in a future post).

Making lightening holes is where the fly cutter tool really shines.  Cutting perfectly round holes by hand is near impossible.

So what is a fly cutter?

​

From Wikipedia:

A fly cutter is composed of a body into which one or two tool bits are inserted. As the entire unit rotates, the tool bits take broad, shallow facing cuts. Fly cutters are analogous to face mills in that their purpose is face milling and their individual cutters are replaceable. Face mills are more ideal in various respects (e.g., rigidity, indexability of inserts without disturbing effective cutter diameter or tool length offset, depth-of-cut capability), but tend to be expensive, whereas fly cutters are very inexpensive.
​

Most fly cutters simply have a cylindrical center body that holds one tool bit. It is usually a standard left-hand turning tool that is held at an angle of 30 to 60 degrees. Fly cutters with two tool bits have no "official" name but are often called double fly cutters, double-end fly cutters, or fly bars. The latter name reflects that they often take the form of a bar of steel with a tool bit fastened on each end. Often these bits will be mounted at right angles to the bar's main axis, and the cutting geometry is supplied by using a standard right-hand turning tool.
Regular fly cutters (one tool bit, swept diameter usually less than 100 mm) are widely sold in machinists' tooling catalogs. Fly bars are rarely sold commercially; they are usually made by the user. Fly bars are perhaps a bit more dangerous to use than endmills and regular fly cutters because of their larger swing. As one machinist put it, running a fly bar is like "running a lawn mower without the deck",[2] that is, the exposed swinging cutter is a rather large opportunity to take in nearby hand tools, rags, fingers, and so on. However, given that a machinist can never be careless with impunity around rotating cutters or workpieces, this just means using the same care as always except with slightly higher stakes. Well-made fly bars in conscientious hands give years of trouble-free, cost-effective service for the facing off of large polygonal workpieces such as die/mold blocks.

​
I particularly like the quote from the machinist that it's like "running a lawn mower without the deck".  After drilling my into my hand a week ago (I'm fine by the way), I'll take this as a warning!

The fly cutter I used is a single arm one.  It's like a high speed compass that cuts metal:
Picture
 
​Adjusted to the right radius/diameter required using the set screws and placed into the drill chuck.  When spinning it clearly will hurt you if it's not respected!  Here it is with the root rib:
Picture

The only safe way to use the fly cutter is to clamp the part being cut down to the drill press table and keep you hands well clear.  Trying to stop a piece of spinning aluminum should the cutter jam would be foolhardy.  I used wooden blocks to prevent marring the aluminum with the C-clamps.  It was also important to make sure the clamps were clear of the rotating fly cutter arm (that also would be very bad):
Picture

The secret with any machine tool cutting is to go slow and steady and use lots of lubrication.  Once lined up correctly, I began to make the cut, adding a little WD40 as I went.  Here is the cut well into the process (yes, the drill was stopped for the picture):
Picture

As soon as the cutter breaks through, pressure is lifted to prevent a chance that the cutter tearing the remaining aluminum.

Re-position and cut two more holes without issue.  It takes a bit of time and I'll have a ton to do for my 750 parts, but it's worth it to have nice clean holes.  Here is the root rib with all three holes cut and the cut out discs.  They are sharp, I wonder if that's how they make pizza cutting wheels for the kitchen!:​
Picture

All cleaned up and waiting for deburring and flanges.  Looks great!
Picture
Picture

Next up, flanges!  Stay tuned and thanks for reading :)
0 Comments

head Stud and push rod tube prep

9/12/2016

0 Comments

 
Looking back I can't believe it's been almost a month and half since I posted to the blog.  I've been busy waiting on some stuff I ordered to take the next steps on the motor rebuild and some travel to visit family in Ann Arbor Michigan took up a bunch of time as well.  Well worth it though, we needed a quick family get-away to recharge.

Since my last post, I took my engine block into the machine shop to fix the snapped stud issue.  They have a highly accurate CNC milling machine which will make short work of the snapped stud.  The process will remove the remnants of the broken stud but this will also mean sacraficing the hole threads.  I've now got the TimeSert install kit that I ordered which will repair the damage and create a new set of threads to insert the studs into.

Until I get the block back from the machinist early next week, I got some of the prep work needed for the studs done.  The original short (lower) head studs from my core engines are in decent shape, but typically very dirty with some light surface rust.  The push rod tubes are similar.  Here is the before pic:
Picture

The perfect tool to clean these is the bench grinder.  This one is a beautiful old school one.  I prefer old tools that are made to last:
Picture

The wire wheel makes short work of cleaning of the decades of old grime and rust and is excellent for cleaning up the stud threads:
Picture

The push rod tubes from the core are really dirty.  Under the grime, the tube was manufactured with two coatings on top of the bare metal, as shown in this picture from Google:
Picture

​I had a go with the wire wheel on one of my tubes and this was the result:
Picture

I'm happy with how they cleaned up, particularly around the o-ring area.  However, after seeing the picture from Google that I found for tonight's blog entry, I'm not sure if I've just removed the grime, or removed the zinc coating as well.  Removing the zinc coating and getting down to the bare steel is what I want to do as this will allow me to paint (or maybe powdercoat) them white as described in the conversion manual.  I'll have another look next time I'm in the shop.  These may require a bit more work.  The one in the picture I copied was sandlasted, perhaps that's what I'll end up doing.

Overall, the first twelve studs all came out really nice and clean - they should paint up real nice.  There are some minor tool marks on each.  I have a bunch more in the inventory, so I'll clean those up too and choose the best ones for the build:
Picture

The other task I've been pondering is cutting new threads on the end of those studs being inserted into the TimeSert holes of the block.

The studs on Corvair engines are made from a very high tensile steel alloy.  The original threads at the block end are a proprietary GM thread called 38-16 NC5.  These will not fit the TimeSert which are the more common 3/8-16 NC.  So, for those holes that I'm installing TimeSerts, I'll have to use a die cutter and rework the threads to be 3/8-16 NC.  The head end doesn't need to be altered.

I had a bit of time today, so I took one of the old long (upper) studs that are being replaced with new ones due to corrosion and experimented cutting new threads on it.  Best case, I see how easy or difficult it is, worst case I ruin an old stud that I won't be using anyhow.

I clamped the stud tightly in the vise.  When I do the good ones, I'll have to remember to put something in the jaws of the vise to prevent clamping damage marks.  Here is a picture of the tools I used.  I couldn't find where ron keeps his cutting oil (if there even is any), so I substituted a little 3-in-1.​
Picture
3/8-16 NC die and handle, stud in the vise and 3-in-1 oil

There ins't a huge difference in the GM thread and the 3/8-16 I need to use with the TimeSerts.  Carefully starting the die on the threads and using a fair amount of oil, I managed to cut or reshape the threads about under half way down.  This involved the time proven method of turning the die down a little bit at a time, and backing off numerous times but it went marvelously well.  Here's a close up:
Picture

When I got home, I test fitted this stud in a TimeSert and it threaded in real nice.  I bit of LocTite 620 should make the repair as good or better than the factory fit.  I've been worried about this process for a long time, but I think with a little attention and time, it's going to work out fine.

Next up, prepping the block for stud install.
0 Comments

i'm a stripper.... (and now that i have your attention)

25/10/2016

0 Comments

 
A couple of more hours in the shop today.  Work continues on the 701 wing rebuild.

Stripped off the last of the paint where the wing and nose skins will be replaced.  A wipe down with acetone and it comes out real shiny!  Next step will be to scuff the aluminium and paint it with primer in preparation for mating the new skins.
Picture

While I was letting the stripper soak in for the above step, I finally got up the nerve to clean and trim the nose skin where the damaged piece was cut away.  Working from the outside, I wanted to make sure to cut not only straight but well away from the underlying nose rib.  To make the task easier, I laid on a piece of painters tape outlining where I was going to cut:
Picture
The black marker notation indicates where the trim needs to happen.

The curve of the nose skin makes this difficult to use hand shears or metal snips.  Bring on the power tools!  Ron suggested using the air powered saw:
Picture

When it's running, the blade on the air saw moves faster than the eye can see.  It's fine tooth blade made short and clean work of the skin.  The last inch or so I did with metal snips to prevent accidentally cutting into the wing spar (that would be a unmitigated disaster!):
Picture
Almost done.... took a small break to check my progress before getting too close to the spar.

A productive couple of hours.

I've sent off a quote request to Zenair for a complete tail kit of my own, minus the rudder pieces I already have.
0 Comments

19 hours, 837 kms.... happy happy happy!

24/9/2016

0 Comments

 
Friday finally got here and I departed home for my road trip to "parts south" at 1130am.

First stop, my long time friend Lynn's place just outisde Barrie.  Lynn and I grew up in the same hometown of Holland Landing and her late father Wally owned the local airport.  For several years Lynn was heavily involved with ultralight aircraft, as a builder, pilot and instructor.  Now heading in a different direction in life, she contacted me with a list of items from sale from her collection.

As I arrived in her driveway, I was very pleasantly surprised to see that one of my best friends Mike (also from Holland Landing) was also there.  It was just like old times - what a fantastic chance to catch up a bit.  None of us has aged by the way ;)
Picture

Lynn had collected up a bunch of stuff for me and made a sales pitch I couldn't refuse.  More on this in a bit.

Next stop, my parent's place to pick up Dad and head to Kitchener to see Scott about the 750 rudder he has for sale.  I like taking Dad on these jaunts when possible.  It's great to catch up and of course talk airplanes - it's certainly something in the DNA I got from him!

After a dinner in Guelph with Dad, we made our way to Scott's place in Kitchener.  The deal for the rudder we agreed to got even sweeter when Scott included a box of Cleco fasteners, Cleco pliers and two heavy paper bags of A4 and A5 rivets - all for $100 cash!  I didn't dicker or give him a chance to change his mind.  START THE CAR!!

We wound our way back to Dad and Moms during Friday evening rush hour and seemed to hit every red light.  Times like this remind me how much I enjoy living in northern Ontario.  I decided to grab a nap for a couple of hours, but by 415am this morning, I was back on the road home (there are other things I have to get done before going back to work tomorrow!)
Picture
0630am parked in the driveway.... 837kms round trip
Once I got home and had some breakfast, I began the inventory process.... in a word, wow!
Picture
Here is a group photo of the items I obtained from Lynn and Scott. Top to bottom, left to right: A handful of the several reference books, bags of Cleco fasteners, over a thousand rivets (paper bags), Cleco pliers, drill bits "The Claw" aircraft tiedown kit and a "One Touch Tach" tool used for confirming prop RPM.

Amazing stuff for my project.  In fairness to Lynn, I won't disclose what I paid for her portion of this stuff, but suffice to say, it pays to stay in touch with friends!

The big item of the trip however is the 750 rudder.  Scott had attended a Zenair factory sponsored  rudder workshop with the intent of getting a head-start on his 750 build, but as is often the case, life got in the way and he decided to part with his barely touched project.  This rudder is already mostly built, including corrosion protection.  Fortunately one side only has some temporary rivets on the skin that can be drilled out so I can confirm everything is good inside and run the wires for a navigation light.  For $100 and the fact it was built in a supervised factory workshop I can drill a few rivets out to confirm.  Unassembled rudder kits are more than $500 from the factory and there is at least $100 in hardware that he threw in.

Deal?  Absolutely!
Picture
My new (to me) 750 rudder

Can't wait to show Ron!

But right now, the lawn needs to be cut.... again.
0 Comments

SPRING is finally here!

16/4/2016

1 Comment

 
Before anyone thinks I am complaining that it took FOREVER for spring to arrive, rest assured, I am grateful.  I'm also reminded by the "shared memories" of Facebook that it hasn't been that uncommon to have snow after or on Easter weekend in the past decade.  At least spring appears to be here for good and we can cancel the arrest warrant for the Groundhog.  He was wanted for fraud.

I got my FlyCorvair.com engine dis-assembly DVD this past week and watched it as a starting point for assessing the 140hp core.

It was a gorgeous afternoon today and I took the opportunity to pull out the engine stand I purchased with the two core motors:
Picture
Custom engine stand. The silver part is a engine mount for a Pietenpol aircraft.
Picture
Nice tray on the back for diagrams and manuals.

With Brenda's help, we lifted the 140hp core up onto the mount.  This gave me the chance to have a better all-around look at it.  I placed it in a spot where the sun this morning would warm any oil inside with a plan to drain it this afternoon:
Picture
The motor is actually backwards on the stand compared to how it would be on an airplane (which is backwards from a car?) as I wanted good access to the harmonic balancer and oil group.

First step after letting the warm, beaming sunshine do it's thing, grab a wrench and bucket to remove the oil drain plug and catch any old oil that might be sitting in the oil pan:
Picture
Oil drain bolt

I removed the oil drain plug and.... it's dry?  I would have thought there would be some oil there, but even the threads on the bolt are dry.

I grabbed a 3/4 inch socket and ratchet and tried turning the crank at the harmonic balancer.  It didn't seem as it is tightening at all.  Watching the cam gear and crankshaft at the other end, they remained dead still..... hmmm.  Maybe the engine is seized?  No oil so it wouldn't surprise me. Weird that the harmonic balancer bolt just keeps turning.  Must mean that whatever the bolt is threaded into is turning inside the oil cover.

This engine core already has the distributor removed.  I looked down the distributor hole as I was turning the harmonic balancer bolt and I can see daylight?:
Picture
Distributor shaft goes in the hole above and to the right of the harmonic balancer
Picture
That dot you see is daylight from the other side

So... the daylight means something is missing on the other side.... namely the oil pump gears and associated cover:
Picture

That explains two things.  The lack of oil in the pan (the oil pump gears are close to being the lowest part of the engine) and the crank not turning as I suspect the crank is seized (possibly bad news for taking apart the pistons and cylinders).
With the concerns I have with the 110hp core studs being damaged and snapped off, the other place I wanted to have a better look at was the studs on this motor, hoping to use this block instead.  Sadly, it looks like someone previous tried to remove the studs, but at least they are complete and not broken.  Hopefully they pass the torque test.  If they pass, great.  If not I'll replace them and use this block.  Some look like they have been partially backed out from the block (not preferable) and one is completely out of the block.  Thankfully all of them seem to have good threads and are clean:
Picture
This is what good threads look like on an upper stud - dirty but not corroded too badly
Picture
Another head nut partially unthreaded.
Picture
This stud came right out just using my fingers, but the threads look good and clean. Hopefully the hole threads are also clean and not stripped.
Picture
A comparison of two studs - the one on the right is still mounted in the block correctly (very few threads showing). The one on the left is backed out.
Picture
This stud should be close to fully threaded in.
Picture
The push rod tubes are mint. They will be easy to clean, polish and paint when the time comes.

Next thing I wanted to have a look at is the rocker arms under the covers.  Oddly, the hold down clips are missing on the rocker covers and 1 of the 4 bolts is a different size.

My next hint that things aren't as they seemed was that the rocker cover I removed came off very easily.  I started to get the picture that they had been removed already and put back by the previous owner:
Picture

Once the cover was off I got my first good look at the valve train.  It became immediately obvious that there are some key pieces missing (the ones I found earlier in my inventory - now I know where they came from!).  The rocker arms are loose enough to spin around their studs:
Picture

​The pushrods are missing....
Picture
I learned something today as well. The steel head clamps (partly visible underneath the rockers) serve double duty - to spead the clamping force across a larger surface of the heads and provide a stud for mounting the rocker balls and arms.

....and so are the valves, as evidenced by the empty valve guides, missing valve springs and keepers:
Picture

This is the final clue that tells me the heads have been previously removed.  There is no way to remove a valve from the head without removing the head from the block.  The valve's shape only allows it to come out from the combustion side of the head, therefore, this head (and likely the other one) have been removed previously.  I have a bunch of valves, springs and retainers in my inventory.  Guess I know where they came from!  It also explains at least in part the lack of oil and the surface rust on the rocker arms (which will be replaced).

That these heads have been off previously this is good news.  This should mean dis-assembly will be easier when I'm ready.  In preparation, I've soaked the upper side head nuts on both sides in PB Blaster penetrating oil.  I continue to soak them for several days before turning a wrench on them.  If I'm careful I should be able to get the heads and cylinders off and have a good block to work with in my conversion.

That should be easier than fixing the 3 broken studs in my other core block.  At least I have some options.
1 Comment
<<Previous

    Time until takeoff

    Author

    Husband, father and 911 dispatcher.  Long time pilot with a licence that burns a hole in my pocket where my student loan money used to be.  First time aircraft builder. Looking to fly my own airplane.

    Categories

    All
    Airframe
    Airport
    Avionics
    Decisions
    Engine
    Interior
    Keep Looking
    Mentor
    Milestone
    Mission
    Motivation
    Paperwork
    Philosophy
    Priorities
    Scrounging
    Tools
    Ultralights
    Welcome Aboard
    Workshop

    Archives

    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    June 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    February 2017
    January 2017
    December 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015

    RSS Feed

    build log

    Item Hours
    Engine 31
    Tail 19
    Wings 24.5
    Fuselage 0.5
    Interior 0
    Controls 1
    Avionics 0
    Other 18
Powered by Create your own unique website with customizable templates.