Happy New Year everyone! With the Christmas holidays over, its time to get back..... WAIT!! Failed well pump at home - replaced/repaired. Failing clothes dryer - replaced. Updated home network infrastructure.... started and functionally complete, but need to do more. Check engine light on the car and new front struts installed. Back to work... shift shuffle meaning an extra day of work to balance out the hours....yay me. So, unfortunately the shop has taken a back seat for a couple of weeks. However, I AM BACK! First up, finishing the centre section drilling out to A5. There is no question the number of rivets make this centre section solid: Drilled out the rest of the elevator skin and nose skin holes to correct size: Caitlyn came over with me to the shop on boxing day to shoot some pics of me working. Here I've taken the nose skin off the elevator to prep the outer hinge plate/pins. The plates are made of 4130 steel, so it's important to centre punch them so the drill bit doesn't wander: A bit of WD40 helps cool the bit, 4130 is a lot harder to drill than aluminum: First holes drilled and plates clecoed in place - back drill to A3 then A4, then A5: Nose skins back on, back on the bench with the stabilizer to start lining everything up, and... .... uh-oh.... some interference between the nose skins and the centre support brackets. Apparently this is a common problem which is easily remedied by trimming the nose skin slightly and trimming the back the rudder support plate edges to clearance the nose skin as it pivots. The fit of the hinge pivot point is still bang on - good! Before pulling them apart again, I used a sharpie to rough out where I need to remove some aluminum: While I had some downtime during a nightshift at work, I rigged up the trim servo and Arduino controller along with an example rocker switch. I had set this aside for several weeks but I wanted to refine my programming code a bit. This is a refurb laptop I fixed up and it took some more work getting the proper drivers for the Arduino installed amongst other things, but once I had those my new code loaded up perfectly and it looks like I've got the system nailed down to do what I want! I brought the mock-up to the shop to show Ron but decided it would be a bit easier to demonstrate by mounting it to a board. I've added some spare LED lights to represent a cockpit indicator and a suplus limit switch to represent a momentary contact switch. I also added a really fancy post-it note flag to the arm of the servo to make it easier to see in a video. Here is a short video describing the components of the system, my reasons for doing so and a demo of what it currently is programmed to do. Be kind, I'm no Martin Scorsese HA! I've been thinking hard on how to bend the elevator trim tab. It's 025 thick and quite long. In addition, it has some complex tight bends that will be hard to do effectively on the bending brake, so I had to really think out an order of operations. Like I usually do, I made up a test piece from some scrap 025 and used it to judge if the plan dimensions accurately reflect the true fit of the trim slot. Unfortunately, they don't quite fit - the gap is too wide to be covered effectively by the piano hinge. I had previously cut a chunk of 025 to the flat dimensions called for in the plans. This the same dimension I used for my mock up piece. This wasn't going to work. The challenge is making the strip wide enough to account for the bends, the depth of the trim tab, the fore/aft distance in the slot and the overlap where they meet the hinge......hmmm.... After much thinking over breakfast coffee it dawned on me - why constrain myself to the flat part size listed in the plans. Why not cut the flat dimensions a bit wider or taller, then trim once I'm happy with the fit? I hate wasting aluminum in this way, but if I oversize the flat dimension enough to clearly cover the trim tab and enough to make use of the cutoff for something else, there won't be any worse waste. At minimum, I'll salvage the cutoff and my original flat piece for other things yet to be fabricated. First bend is the small tab at the hinge joint. The bender does good work on this, but can't bend far enough closed on this radius, so I had to bend it down further by hand. Fastening it the bench and leaning on it with a 2x4 worked. Next I bent the lower angle on the bender - this one is much more open so it worked as expected. I placed the sheet in the approximate position in the trim tab slot. Width is a bit close will trim it down a bit to avoid any interference with the trailind edge. It''s clear from this picture the sheet I cut is well wide enough to cover the return bend back to the hinge. Next I started fitting the hinge. The key here is to align the hinge left to right to take best advantage of a full barrel at each end. The barrel of the hinge alse needs to fit snug up against the trim spar. I used a small spare piece of hinge to mark out the correct length and it fits perfectly to the spar laterally. On top is the spare hinge, length marked in green and my new hinge below it marked in red where I want to cut it A chop saw makes quick work of the folded hinge, cutting though it evenly and easily. For the next step I pulled the pin out and ground down one side of the hinge arms to accommodate the safety wire required at each end to prevent the hinge pin from working it out - that would be bad! To allow for safety wire, the hinge pin is slightly shortened to be just long enough to reach the last barrel at each end. I remembered someone online suggesting using the bench grinder to slightly chamfer the rod ends to make sliding it back down the barrels easier. Just a small thing but made all the difference when reassembling the hinge several times over the course of this work. I also plan on using similar hinge to close up the engine cowling which will be open and closed more frequently - more on that later. I flipped the elevator over again. When I was drilling the elevator skin, I didn't drill the holes where the skin meets the trim spar because I was waiting to see how the hinge would fit. As it turns out, this was a good idea, it saved me having to drill twice. I marked out the 40 pitch hole placement, placed the un-drilled hinge between the skin and trim spar and drilled it out to A3 (picture is after layout hinge pin not placed as of yet). With the hinge apart again, careful drill of a small hole through the last barrel at each end to thread the safety wire when final assembly of the trim tab is complete. In this picture, I've already drilled out the 40 pitch A3 holes on the spar side of the hinge. Folding it over on itself, I marked the holes though to the trim tab side of the hinge (black marker dots on the left), then used this as a centre line (black) for plotting my holes on that side. I decided to offset them 20 mm from the spar side (blue tick marks) Flip the elevator back over for viewing and dry fit of hinge to confirm safety wire hole is accessible AND viewable, both for installation and for routine pre-flight checks. From here I removed the hinge again and drilled out the A3 holes on the trim tab side of the hinge as marked. With the bend width confirmed, I used the bender to create the trailing edge bend. It's tight and the bender can only bend so far over. From here, a 2x4 it used to lean on it and bend it further down to match the first. This picture clearly shows the long side of the trim tab will extend well beyond where it should - just like I planned. With it close to coming together I flipped the entire thing over and secured it to the bench. This gives a much better view of the planned overhang. A quick sharpie line down the length gives a good line for trimming away the excess. I drilled both ends of the trim side of the hinge to the trim tab and one in the middle for good measure. With it clecoed together in these three spots, I ressembled the hinge halves, clecoed it to the spar/skin side. Next, I proceeded to drill the rest of the trim side of the hinge to the trim tab using the previously drilled holes as a guide. Took the whole thing off the elevator (again) and used the duplicator to match the holes on the overlap trim tab skin. I love this tool! With everything clecoed together again, I checked the movement - nice and smooth and no binding. With everything good, drilled everything out to A4 final size Voila! (gratuitous happy moment capture) With a few more minutes to spare, I decided to put everything on the bench again and line it up. Before doing that, I made the modification to the centre hinge plate that will allow the elevator nose skins the room needed to move up and down. I also trimmed the nose skin slightly to avoid any interference with the centre hinge support bracket. With everything lining up and measured correctly, and confirming the whole assembly is flat and level, I marked out where the centre hinge bracket meets the elevator hinge spar bracket. With those marked where they meet, I took them off their respective assemblies for drilling. I started with an A3 hole which will be enlarged to the correct size next. Holding it together with an A3 cleco, I confirmed they won't interfere when the elevator pivots up and down. I stopped here, because when I was reviewing the plans, I have concerns about the size and type of the bolt used as the hinge pivot. The plans call for an AN3 bolt and vinyl insert lock nut. Not only does this seem awful small diameter, I believe it would be wiser to up-size the bolt diameter to an AN4 bolt and use a castle-nut and cotter pin to secure it. This mod is an improvement, I'll have to do some research what size bushing that will require. Very happy with what I've accomplished so far. Next up is finishing the elevator/stab connections and fitting the servo and trim actuator rod. Thanks for reading :)
0 Comments
Leave a Reply. |
New here? Try starting at:AuthorHusband, father and 911 dispatcher. Long time pilot with a licence that burns a hole in my pocket where my student loan money used to be. First time aircraft builder. Looking to fly my own airplane. Categories
All
Archives
February 2021
build log
|